A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS
نویسندگان
چکیده
In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for the optimal control problems governed by bilinear elliptic equations in L2−H1 norms. We also give a posteriori lower error bounds for the error estimate of the optimal control problems. These estimates can be readily used for constructing a reliable adaptive finite element approximation for such optimal control problems.
منابع مشابه
Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA POSTERIORI ERROR ESTIMATES OF hp-FEM FOR OPTIMAL CONTROL PROBLEMS
Finite element approximation plays an important role in the numerical methods of optimal control problems. There have been extensive theoretical and numerical studies for the finite element approximation of various optimal control problems. However the literature is too huge to even give a very brief review here. In recent years, the adaptive finite element method has been extensively investiga...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کامل